Das duas, uma: ou a matemática era um dos seus piores pesadelos nos tempos de escola ou você pegou tanto gosto pelos números que resolveu seguir uma profissão relacionada a eles quando crescesse.
Seja qual for o seu caso, não tem como não achar incrível a transformação dos números por meio de fórmulas e a possibilidade de calcular fenômenos da natureza inteiros só com conhecimentos de aritmética, álgebra ou geometria.
Pensando nesses fatores que impressionam desde os matemáticos até os já que encararam uma reprovação, reunimos abaixo algumas curiosidades e fatos sobre essa ciência que pode ser bastante divertida – e que muita gente ama odiar.
1. O poder do “4”
Essa aqui é mérito nacional e bastante conhecido de quem já gostava de matemática na infância. Escrito pelo brasileiro Júlio César de Melo e Sousa, sob o pseudônimo Malba Tahan, o livro “O Homem que Calculava” trazia, entre outras teorias, a dos “quatro quatros”.
Segundo ela, é possível formar qualquer número inteiro de 0 a 100 utilizando quatro numerais 4 e sinais de operações matemáticas, como soma, divisão, exponenciação ou fatorial. Deseja obter um “3”? É só fazer a seguinte operação: (4+4+4)/4. Fãs de Tahan já afirmam conseguir obter qualquer número até a casa dos 100.000. Será que você consegue?
2. Como é que é?
O austríaco Kurt Gödel é responsável por uma das curiosidades mais interessantes e bizarras da matemática. O “Teorema da incompletude” que leva seu nome tem duas teorias, mas a segunda delas é capaz de confundir a cabeça até do fã mais radical dessa ciência.
Segundo ela, uma teoria aritmética só pode provar sua consistência se for um axioma inconsistente. Calma, explicamos: uma fórmula não pode garantir sua própria existência – mas isso pode ser feito por outra verdade matemática, que dá continuidade ao ciclo. Que confusão!
3. Ele está em todo lugar
O número de ouro é uma das teorias mais surpreendentes da matemática – e também a que mais está envolvida em mentiras. Ela fala de uma unidade irracional que estaria presente em vários elementos da natureza, da arquitetura e até do corpo humano.
Representado pelo símbolo grego Phi (f), o número 1,6180, que seria equivalente à razão diagonal/lado de um pentágono regular, é estudado desde a Antiguidade por matemáticos. Ele indicaria a harmonia, por isso estaria presente em obras de Leonardo da Vinci, construções como as Pirâmides do Egito e até no comprimento das falanges humanas. Mas isso também o levou a ser questionado por muitos outros teóricos recentes, que afirmam que a presença dele em obras de arte é pura especulação.
4. Recompensa cheia de números
Em 2000, o Clay Mathematics Institute anunciou que pagaria o prêmio de US$ 1 milhão a cada matemático que fosse capaz de resolver os chamados “problemas do milênio”: sete problemas bolados durante vários séculos e que nunca haviam sido resolvidos.
Ninguém nega que o prêmio é bom, mas isso não significa que ele sairia tão facilmente. Demorou dez anos para a fundação desembolsar o primeiro dos sete pagamentos, feito ao russo Grigori Perelman, que resolveu a chamada “conjectura de Poincaré”, uma série de cálculos abstratos envolvendo esferas tridimensionais. Ele rejeitou o pagamento e, até agora, ainda é o único a riscar um problema da lista.
5. Gênio precoce
Nessa época, ele inventou um ramo totalmente novo da matemática, a “teoria dos grupos”, na qual constava a resposta sobre como resolver uma equação do 5° grau ou mais sem utilizar a transformação dos radicais, mas buscando as raízes da fórmula.
6. Tem que estudar mais, menino!
A nota média de matemática dos estudantes que se formaram no ensino médio em 2011 e prestaram o exame SAT (Scholastic Aptitude Test) foi de apenas 510 pontos, em um total de 800. O teste serve para avaliar a aptidão do aluno e direcioná-lo para a universidade mais adequada.
7. Primo de quem?
Os números primos fazem parte de um dos mais simples e intrigantes mistérios da matemática. Por que o 7, o 13 e o 29 são primos – e as unidades anteriores ou seguintes não? O padrão de distribuição dessa classificação permanece desconhecido, mas há uma luz no fim do túnel.
Chamada “Hipótese de Riemann”, a teoria tenta estabelecer um padrão escondido e não aleatório para os números primos – mas entender isso leva ainda mais tempo do que decorá-los.
Nenhum comentário:
Postar um comentário